

## **Dual Nature of Radiation and Matter**

## Q.No.1:

The anode voltage of photocell is kept fixed. The wavelength  $\lambda$  of the light falling of the cathode is gradually changed. The plate current I of the photocell varies as follows:





**Q.No.2:** Match **List** – **I** (Fundamental Experiment) with **List** – **II** (its conclusion) and select the correct option from the choices given below the list :

|     | List – I                   |       | List – II                      |
|-----|----------------------------|-------|--------------------------------|
| (A) | Franck-Hertz Experiment.   | (i)   | Particle nature of light       |
| (B) | Photo-electric experiment. | (ii)  | Discrete energy levels of atom |
| (C) | Davison-Germer Experiment  | (iii) | Wave nature of electron        |
|     |                            | (iv)  | Structure of atom              |

JEE 2015

**A.** A - (i), B - (iv), C - (iii) **B.** A - (ii), B - (iv), C - (iii) **C.** A - (ii), B - (i), C - (iii)**D.** A - (iv), B - (ii), C - (ii)

**Q.No.3:** Radiation of wavelength  $\lambda$ , is incident on a photocell. The fastest emitted electron has speed v. If the wavelength is changed to  $\frac{3\lambda}{4}$ , the speed of the fastest emitted electron will be: **JEE 2016** 

A.  $< v \left( rac{4}{3} 
ight)^{rac{1}{2}}$ B.  $= v \left( rac{4}{3} 
ight)^{rac{1}{2}}$ C.  $= v \left( rac{3}{4} 
ight)^{rac{1}{2}}$ D.  $> v \left( rac{3}{4} 
ight)^{rac{1}{2}}$ 

Q.No.4: Arrange the following electromagnetic radiations per quantum in the



**Q.No.5:** An electron bean is acceleration by a potential difference V to hit a metallic target to produce X-rays. It produces continuous as well as characteristic X-rays. If  $\lambda_{min}$  is the smallest possible wavelength of X-ray in the spectrum, the variation of log  $\lambda_{min}$  with log V is correctly represented in:



**JEE 2016** 



**Q.No.6:** Some energy levels of a molecule are shown in the figure. The ratio of the wavelengths  $r = \lambda_1/\lambda_2$ , is given by:



**Q.No.7:** Surface of certain metal is first illuminated with light of wavelength  $\lambda_1$ = 350 nm and then, by light of wavelength  $\lambda_2$  = 540 nm. It is found that the maximum speed of the photo electrons in the two cases differ by a factor of 2. The work function of the metal (in eV) is close to:

 $\left[ {
m Energy} ~~{
m of}~{
m photon} = rac{1240}{\lambda ({
m in}~{
m nm})} {
m eV} 
ight]$ **JEE 2019 A.** 1.8 **B.** 2.5 **C.** 5.6 **D.** 1.4

Q.No.8: The magnetic field associated with a light wave is given, at the origin, by B = B<sub>0</sub> [sin(3.14 × 10<sup>7</sup>)ct + sin(6.28 × 10<sup>7</sup>)ct]. If this light falls on a silver plate having a work function of 4.7 eV, what will be the maximum kinetic energy of the photo electrons? **JEE 2019** 

 $(c = 3 \times 10^8 \text{ ms}^{-1}, h = 6.6 \times 10^{-34} \text{ J-s})$ 

- **A.** 6.82 eV
- **B.** 12.5 eV
- **C.** 8.52 eV
- **D.** 7.72 eV

**Q.No.9:** In an electron microscope, the resolution that can be achieved is of the order of the wavelength of electrons used. To resolve a width of  $7.5 \times 10^{-12}$ m, the minimum electron energy required is close to: **JEE 2019** 

- A. 500 keV
- **B.** 100 keV
- **C.** 1 keV
- **D.** 25 keV

**Q.No.10:** A metal plate of area  $1 \times 10^{-4}$  m<sup>2</sup> is illuminated by a radiation of intensity 16 mW/m<sup>2</sup>. The work function of the metal is 5 eV. The energy of the incident photons is 10 eV and only 10% of it produces photo electrons. The number of emitted photo electrons per second and their maximum energy, respectively, will be:  $[1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}]$ **JEE 2019** 

- **A.** 10<sup>14</sup> and 10 eV
- **B.** 10<sup>12</sup> and 5 eV
- **C.** 10<sup>11</sup> and 5 eV